How do I evaluate the indefinite integral ∫sin2(2t)dt ?
1 Answer
Jul 28, 2014
=12t−18sin4t+c , wherec is a constant
Explanation,
=∫sin2(2t)dt Using trigonometric identity,
cos2t=1−2sin2t
sin2t=1−cos2t2 , inserting this value ofsin2t in integral, we get
=∫1−cos4t2dt
=12∫1dt−12∫cos4tdt
=12t−12sin4t4+c , wherec is a constant
=12t−18sin4t+c , wherec is a constant