How do I find the integral #int(x*e^-x)dx# ?

1 Answer
Aug 4, 2014

#int xe^(-x) dx = -xe^(-x) - e^(-x) + C#

Process:

#int x e^(-x) dx =# ?

This integral will require integration by parts. Keep in mind the formula:

#int u dv = uv - int v du#

We will let #u = x#, and #dv = e^(-x) dx#.

Therefore, #du = dx#. Finding #v# will require a #u#-substitution; I will use the letter #q# instead of #u# since we are already using #u# in the integration by parts formula.

#v = int e^(-x) dx#
let #q = -x#.

thus, #dq = -dx#

We will rewrite the integral, adding two negatives to accommodate #dq#:

#v = -int -e^(-x) dx#

Written in terms of #q#:

#v = -int e^(q) dq#

Therefore,

#v = -e^(q)#

Substituting back for #q# gives us:

#v = -e^(-x)#

Now, looking back at the IBP's formula, we have everything we need to start substituting:

#int xe^(-x) dx = x*(-e^(-x)) - int -e^(-x) dx#

Simplify, canceling the two negatives:

#int xe^(-x) dx = -xe^(-x) + int e^(-x) dx#

That second integral should be easy to solve - it's equal to #v#, which we've already found. Simply substitute, but remember to add the constant of integration:

#int xe^(-x) dx = -xe^(-x) - e^(-x) + C#