How do you evaluate the integral int(1+x)^2 dx∫(1+x)2dx?
1 Answer
Aug 15, 2014
=x^3/3+x^2+x+C=x33+x2+x+C , whereCC is a constantExplanation :
I=int(1+x)^2dxI=∫(1+x)2dx It can be solved by two methods,
(I)(I) using Integration by Substitution
let's
1+x=t1+x=t =>⇒ dx=dtdx=dt then,
intt^2dt=t^3/3+c∫t2dt=t33+c Substituting
tt back,
=(1+x)^3/3+c=(1+x)33+c , wherecc is a constant
=1/3(x^3+3x^2+3x+1)+c=13(x3+3x2+3x+1)+c , wherecc is a constant
=x^3/3+x^2+x+1/3+c=x33+x2+x+13+c , wherecc is a constant
=x^3/3+x^2+x+C=x33+x2+x+C , whereCC is again a constant
(II)(II) Expanding
(1+x)^2=x^2+2x+1(1+x)2=x2+2x+1 , we get
int(x^2+2x+1)dx∫(x2+2x+1)dx
=x^3/3+2x^2/2+x+c=x33+2x22+x+c , wherecc is a constant
=x^3/3+x^2+x+c=x33+x2+x+c , wherecc is a constant