How do you evaluate the integral int(1+x)^2 dx(1+x)2dx?

1 Answer
Aug 15, 2014

=x^3/3+x^2+x+C=x33+x2+x+C, where CC is a constant

Explanation :

I=int(1+x)^2dxI=(1+x)2dx

It can be solved by two methods,

(I)(I)

using Integration by Substitution

let's 1+x=t1+x=t => dx=dtdx=dt

then, intt^2dt=t^3/3+ct2dt=t33+c

Substituting tt back,

=(1+x)^3/3+c=(1+x)33+c, where cc is a constant

=1/3(x^3+3x^2+3x+1)+c=13(x3+3x2+3x+1)+c, where cc is a constant

=x^3/3+x^2+x+1/3+c=x33+x2+x+13+c, where cc is a constant

=x^3/3+x^2+x+C=x33+x2+x+C, where CC is again a constant

(II)(II)

Expanding (1+x)^2=x^2+2x+1(1+x)2=x2+2x+1, we get

int(x^2+2x+1)dx(x2+2x+1)dx

=x^3/3+2x^2/2+x+c=x33+2x22+x+c, where cc is a constant

=x^3/3+x^2+x+c=x33+x2+x+c, where cc is a constant