Question #b4d3e

1 Answer

This is a long problem, so here is the first part:

The tangential acceleration is:

(e^(2t)-1/(4t^2)-e^(-2t))/(e^(2t)+1/(2t)+e^(-2t))(e^t,1/sqrt(2t),-e^(-t))e2t14t2e2te2t+12t+e2t(et,12t,et)

Here's the second part:

The normal acceleration is:

(e^t(1-(e^(2t)-1/(4t^2)-e^(-2t))/(e^(2t)+1/(2t)+e^(-2t))),-1/sqrt(2t)(1/(2t)+(e^(2t)-1/(4t^2)-e^(-2t))/(e^(2t)+1/(2t)+e^(-2t))),e^(-t)(1+(e^(2t)-1/(4t^2)-e^(-2t))/(e^(2t)+1/(2t)+e^(-2t))))(et(1e2t14t2e2te2t+12t+e2t),12t(12t+e2t14t2e2te2t+12t+e2t),et(1+e2t14t2e2te2t+12t+e2t))

The round brackets should be angle brackets to indicate a vector.

r(t)=(e^t,sqrt(2t),e^(-t))r(t)=(et,2t,et)
=(e^t,(2t)^(1/2),e^(-t))=(et,(2t)12,et)

We just take the derivatives component-wise:

r'(t)=(e^t,(2t)^(-1/2),-e^(-t))
r''(t)=(e^t,-(1/2)(2t)^(-3/2)(2),e^(-t))
=(e^t,-(2t)^(-3/2),e^(-t))

We need to find the unit tangent vector:

T(t)=(r'(t))/(|r'(t)|)

We already have r'(t), so let's compute the other:

|r'(t)|=sqrt((e^t)^2+((2t)^(-1/2))^2+(e^(-t))^2)
=sqrt(e^(2t)+1/(2t)+e^(-2t))

We need to find the acceleration component (this is the magnitude of the acceleration in the direction of the tangent vector):

a_T=(r'(t)*r''(t))/(|r'(t)|)
=((e^t*e^t,(2t)^(-1/2)*-(2t)^(-3/2),-e^(-t)*e^(-t)))/(|r'(t)|)
=((e^(2t)-(2t)^(-2)-e^(-2t)))/(|r'(t)|)

To get the tangential acceleration, we multiply the magnitude by the unit tangent vector:

a_T T(t)=(r'(t)*r''(t))/(|r'(t)|) (r'(t))/(|r'(t)|)
=((e^(2t),-(2t)^(-2),-e^(-2t)))/sqrt(e^(2t)+1/(2t)+e^(-2t)) (e^t,(2t)^(-1/2),-e^(-t))/sqrt(e^(2t)+1/(2t)+e^(-2t))
=((e^(2t)-(2t)^(-2)-e^(-2t)))/(e^(2t)+1/(2t)+e^(-2t)) (e^t,(2t)^(-1/2),-e^(-t))

If you are comfortable with projections, the tangential acceleration is the acceleration vector projected onto the unit tangent vector.

End of part 1

Part 2:
As you can see the normal acceleration is really messy to calculate. The formula for normal acceleration a_N N(t)

kappa=1/(|r'(t)|) |(dT)/(dt)|
a_N=kappa |r'(t)|^2=(|r'(t) xx r''(t)|)/(|r'(t)|)

Since kappa is usually difficult to compute, we'll use the second formula (we've computed |r'(t)|, so we'll substitute later):

a_N=(|(e^t,(2t)^(-1/2),-e^(-t)) xx (e^t,-(1/2)(2t)^(-3/2)(2),e^(-t))|)/(|r'(t)|)
=(|(1/(sqrt(2t)e^t)-1/(2tsqrt(2t)e^t),-(1-(-1)), -(e^t)/(2tsqrt(2t))-(e^t)/sqrt(2t))|)/(|r'(t)|)
=(|(1/(sqrt(2t)e^t)(1-1/(2t)),-2, -(e^t)/sqrt(2t)(1/(2t)+1))|)/(sqrt(e^(2t)+1/(2t)+e^(-2t)))

To compute N(t):

N(t)=1/kappa (dT)/(ds)

Again, this is messy. If you need the normal acceleration, just compute this with:

a_N N(t)=a-a_T T(t)
=r''(t)-a_T T(t)