How do you find the derivative of y= x/sqrt(x^2+1) ?
1 Answer
Sep 4, 2014
y'=1/(x^2+1)^(3/2) Solution :
y=x/sqrt(x^2+1) Using Quotient Rule, which is
y=f/g , theny'=(gf'-fg')/(g^2) similarly following for the given problem, yields
y'=(sqrt(x^2+1)-x*1/(2sqrt(x^2+1))*(2x))/(sqrt(x^2+1))^2
y'=(sqrt(x^2+1)-x^2/(sqrt(x^2+1)))/(x^2+1)
y'=((x^2+1)-x^2)/(x^2+1)^(3/2)
y'=1/(x^2+1)^(3/2)