How do you find the derivative of y= x/sqrt(x^2+1) ?

1 Answer
Sep 4, 2014

y'=1/(x^2+1)^(3/2)

Solution :

y=x/sqrt(x^2+1)

Using Quotient Rule, which is

y=f/g, then y'=(gf'-fg')/(g^2)

similarly following for the given problem, yields

y'=(sqrt(x^2+1)-x*1/(2sqrt(x^2+1))*(2x))/(sqrt(x^2+1))^2

y'=(sqrt(x^2+1)-x^2/(sqrt(x^2+1)))/(x^2+1)

y'=((x^2+1)-x^2)/(x^2+1)^(3/2)

y'=1/(x^2+1)^(3/2)