How do you evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ?
1 Answer
Sep 19, 2014
=-(cos^3x)/3+(cos^5x)/5+c , wherec is a constantExplanation :
=intsin^3(x)*cos^2(x)dx
=intsin^2(x)*sin(x)*cos^2(x)dx from trigonometric identity
sin^2(x)+cos^2(x)=1 , we getsin^2(x)=1-cos^2(x)
=intsin(x)*(1-cos^2(x))*cos^2(x)dx let's
cos(x)=t ,=>-sin(x)dx=dt
=int(1-t^2)*t^2(-dt)
=-int(1-t^2)*t^2dt
=-int(t^2-t^4)dt
=-intt^2dt+intt^4dt
=-t^3/3+t^5/5+c , wherec is a constantsubstituting
t back, yields
=-(cos^3x)/3+(cos^5x)/5+c , wherec is a constant