How do you evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ?

1 Answer
Sep 19, 2014

=-(cos^3x)/3+(cos^5x)/5+c, where c is a constant

Explanation :

=intsin^3(x)*cos^2(x)dx

=intsin^2(x)*sin(x)*cos^2(x)dx

from trigonometric identity sin^2(x)+cos^2(x)=1, we get sin^2(x)=1-cos^2(x)

=intsin(x)*(1-cos^2(x))*cos^2(x)dx

Integration by Substitution

let's cos(x)=t, =>-sin(x)dx=dt

=int(1-t^2)*t^2(-dt)

=-int(1-t^2)*t^2dt

=-int(t^2-t^4)dt

=-intt^2dt+intt^4dt

=-t^3/3+t^5/5+c, where c is a constant

substituting t back, yields

=-(cos^3x)/3+(cos^5x)/5+c, where c is a constant