We need to complete the square for the x and x^2xandx2 terms and then for the y and y^2yandy2 terms.
First, reorder the terms
-9x^2+72x+4y^2-16y=164−9x2+72x+4y2−16y=164
Factor out a -9−9 from the first 2 terms.
*Remember to change the signs.
Factor out a 44 from the last 2 terms.
-9(x^2-8x)+4(y^2-4y)=164−9(x2−8x)+4(y2−4y)=164
Work with the xx term.
(-8/2)^2=(-4)^2=16(−82)2=(−4)2=16
Remember that we factor out -9−9 so, we have to add -9*4=-36−9⋅4=−36 to the right side of the equation.
Work with the yy term.
(-4/2)^2=(-2)^2=4(−42)2=(−2)2=4
Remember that we factor out 44 so, we have to add 4*4=164⋅4=16 to the right side of the equation.
-9(x^2-8x+16)+4(y^2-4y+4)=164-144+16−9(x2−8x+16)+4(y2−4y+4)=164−144+16
Factor:
x^2-8x+16=>(x-4)^2 => x2−8x+16⇒(x−4)2⇒ Perfect square trinomial
y^2-4y+4=>(y-2)^2 =>y2−4y+4⇒(y−2)2⇒ Perfect square trinomial
-9(x-4)^2+4(y-2)^2=164-144+16−9(x−4)2+4(y−2)2=164−144+16
-9(x-4)^2+4(y-2)^2=36−9(x−4)2+4(y−2)2=36
(-9(x-4)^2)/36+(4(y-2)^2)/36=36/36−9(x−4)236+4(y−2)236=3636
-((x-4)^2)/4+((y-2)^2)/9=1−(x−4)24+(y−2)29=1