How do I convert the equation -9x^2 +4y^2 +72x-16y =1649x2+4y2+72x16y=164 to standard form?

1 Answer
Sep 25, 2014

We need to complete the square for the x and x^2xandx2 terms and then for the y and y^2yandy2 terms.

First, reorder the terms

-9x^2+72x+4y^2-16y=1649x2+72x+4y216y=164

Factor out a -99 from the first 2 terms.
*Remember to change the signs.

Factor out a 44 from the last 2 terms.

-9(x^2-8x)+4(y^2-4y)=1649(x28x)+4(y24y)=164

Work with the xx term.

(-8/2)^2=(-4)^2=16(82)2=(4)2=16

Remember that we factor out -99 so, we have to add -9*4=-3694=36 to the right side of the equation.

Work with the yy term.

(-4/2)^2=(-2)^2=4(42)2=(2)2=4

Remember that we factor out 44 so, we have to add 4*4=1644=16 to the right side of the equation.

-9(x^2-8x+16)+4(y^2-4y+4)=164-144+169(x28x+16)+4(y24y+4)=164144+16

Factor:

x^2-8x+16=>(x-4)^2 => x28x+16(x4)2 Perfect square trinomial

y^2-4y+4=>(y-2)^2 =>y24y+4(y2)2 Perfect square trinomial

-9(x-4)^2+4(y-2)^2=164-144+169(x4)2+4(y2)2=164144+16

-9(x-4)^2+4(y-2)^2=369(x4)2+4(y2)2=36

(-9(x-4)^2)/36+(4(y-2)^2)/36=36/369(x4)236+4(y2)236=3636

-((x-4)^2)/4+((y-2)^2)/9=1(x4)24+(y2)29=1