How do I find the integral inte^(2x)*sin(3x)dx ?

1 Answer
Sep 25, 2014

=3/13e^(2x)(2/3sin(3x)-cos(3x))

Explanation :

I=inte^(2x)*sin(3x)dx .........(i)

Using Integration by Parts,

I=e^(2x)intsin(3x)dx-int(d/dx(e^(2x))intsin(3x)dx)dx

I=e^(2x)(-cos(3x)/3)-int2*e^(2x)(-cos(3x)/3)dx

I=-e^(2x)*cos(3x)/3+2/3inte^(2x)cos(3x)dx

I=-e^(2x)*cos(3x)/3+2/3I_1 .........(ii)

where, I_1=inte^(2x)cos(3x)dx

Again, using Integration by Parts,

I_1=e^(2x)intcos(3x)-int(d/dx(e^(2x))intcos(3x)dx)dx

I_1=e^(2x)*sin(3x)/3-int(2*e^(2x)sin(3x)/3)dx

I_1=e^(2x)*sin(3x)/3-2/3inte^(2x)sin(3x)dx

I_1=e^(2x)*sin(3x)/3-2/3I, [using (i)]

now, putting I_1 in (ii) yields,

I=-e^(2x)*cos(3x)/3+2/3(e^(2x)*sin(3x)/3-2/3I)

I=-e^(2x)*cos(3x)/3+2/9e^(2x)*sin(3x)-4/9I

I+4/9I=-e^(2x)*cos(3x)/3+2/9e^(2x)*sin(3x)

13/9I=e^(2x)/3(2/3sin(3x)-cos(3x))

I=3/13e^(2x)(2/3sin(3x)-cos(3x))