How do I find the integral inte^(2x)*sin(3x)dx ?
1 Answer
Explanation :
I=inte^(2x)*sin(3x)dx .........(i) Using Integration by Parts,
I=e^(2x)intsin(3x)dx-int(d/dx(e^(2x))intsin(3x)dx)dx
I=e^(2x)(-cos(3x)/3)-int2*e^(2x)(-cos(3x)/3)dx
I=-e^(2x)*cos(3x)/3+2/3inte^(2x)cos(3x)dx
I=-e^(2x)*cos(3x)/3+2/3I_1 .........(ii) where,
I_1=inte^(2x)cos(3x)dx Again, using Integration by Parts,
I_1=e^(2x)intcos(3x)-int(d/dx(e^(2x))intcos(3x)dx)dx
I_1=e^(2x)*sin(3x)/3-int(2*e^(2x)sin(3x)/3)dx
I_1=e^(2x)*sin(3x)/3-2/3inte^(2x)sin(3x)dx
I_1=e^(2x)*sin(3x)/3-2/3I , [using(i) ]now, putting
I_1 in(ii) yields,
I=-e^(2x)*cos(3x)/3+2/3(e^(2x)*sin(3x)/3-2/3I)
I=-e^(2x)*cos(3x)/3+2/9e^(2x)*sin(3x)-4/9I
I+4/9I=-e^(2x)*cos(3x)/3+2/9e^(2x)*sin(3x)
13/9I=e^(2x)/3(2/3sin(3x)-cos(3x))
I=3/13e^(2x)(2/3sin(3x)-cos(3x))