How do I find derivatives of radicals like sqrt(x)?

1 Answer
Oct 11, 2014

We can use the Power Rule and the Difference Quotient ( First Principles ).

Power Rule

f(x)=sqrt(x)=x^(1/2)

f'(x)=(1/2)x^((1/2-1))=(1/2)x^((1/2-2/2))=(1/2)x^((-1/2))=1/(2sqrt(x))

Difference Quotient ( First Principles )

f'(x)=lim_(h->0)(f(x+h)-f(x))/h

f(x)=sqrt(x)

f(x+h)=sqrt(x+h)

f'(x)=lim_(h->0)(sqrt(x+h)-sqrt(x))/h

f'(x)=lim_(h->0)(sqrt(x+h)-sqrt(x))/h*(sqrt(x+h)+sqrt(x))/(sqrt(x+h)+sqrt(x))

f'(x)=lim_(h->0)(x+h-x)/(h*(sqrt(x+h)+sqrt(x)))

f'(x)=lim_(h->0)(h)/(h*(sqrt(x+h)+sqrt(x)))

f'(x)=lim_(h->0)1/(sqrt(x+h)+sqrt(x))

f'(x)=1/(sqrt(x+0)+sqrt(x))

f'(x)=1/(sqrt(x)+sqrt(x))

f'(x)=1/(2sqrt(x))

Please see the videos below and a similar question.

Difference Quotient

Power Rule

How do you find the derivative of f(x)=sqrt(x) ?