First Principles ->→ Difference Quotient
f'(x)=lim_(h->0)(f(x+h)-f(x))/h
f(x)=x^2+7x-4
f(x+h)=(x+h)^2+7(x+h)-4
f'(x)=lim_(h->0)((x+h)^2+7(x+h)-4-(x^2+7x-4))/h
f'(x)=lim_(h->0)((x+h)^2+7(x+h)-4-x^2-7x+4)/h
f'(x)=lim_(h->0)((x+h)^2+7x+7h-4-x^2-7x+4)/h
f'(x)=lim_(h->0)(x^2+2xh+h^2+7x+7h-4-x^2-7x+4)/h
f'(x)=lim_(h->0)(2xh+h^2+7h)/h
f'(x)=lim_(h->0)(h(2x+h+7))/h
f'(x)=lim_(h->0)(2x+h+7)
f'(x)=2x+(0)+7
f'(x)=2x+7