First Principles ->→ Difference Quotient
f'(x)=lim_(h->0)(f(x+h)-f(x))/h
f(x)=x^3
f(x+h)=(x+h)^3
f'(x)=lim_(h->0)((x+h)^3-x^3)/h
f'(x)=lim_(h->0)((x+h)(x^2+2xh+h^2)-x^3)/h
f'(x)=lim_(h->0)(x^3+2x^2h+xh^2+x^2h+2xh^2+h^3-x^3)/h
f'(x)=lim_(h->0)(2x^2h+xh^2+x^2h+2xh^2+h^3)/h
f'(x)=lim_(h->0)(h*(2x^2+xh+x^2+2xh+h^2))/h
f'(x)=lim_(h->0)2x^2+xh+x^2+2xh+h^2
f'(x)=lim_(h->0)3x^2+xh+2xh+h^2
f'(x)=3x^2+x(0)+2x(0)+(0)^2
f'(x)=3x^2