Question #5eeee
1 Answer
Oct 13, 2014
y'=5*cos2x Method : I
Explanation :
y = 5sin(x)cos(x) From trigonometric identities,
sin2A=2sinAcosA
y=5/2*2sin(x)cos(x)
y=5/2*sin2x Now differentiating with respect to
x ,
y'=5/2*(cos2x)*2
**y'=5*cos2x** Method : II
Using Product Rule, which is
y=f(x)*g(x) , then
y'=f'(x)*g(x)+f(x)*g'(x) Similarly following for the given problem, yields
y'=5*(cosx(cosx)+sinx(-sinx))
y'=5*(cos^2x-sin^2x)
**y'=5*cos2x**