How do I find the partial-fraction decomposition of #(3x^2+2x-1)/((x+5)(x^2+1))#?

1 Answer
Oct 20, 2014

#(3x^2+2x-1)/((x+5)(x^2+1))# becomes ...

#(3x^2+2x-1)/((x+5)(x^2+1))=A/(x+5)+(Bx+C)/(x^2+1)#

Multiply through by #(x+5)(x^2+1)#

#(3x^2+2x-1)=A(x^2+1)+(Bx+C)(x+5)#

First solve for #A#

#x=-5#

#(3(-5)^2+2(-5)-1)=A((-5)^2+1)+(B(-5)+C)((-5)+5)#

#(3(25)-10-1)=A(25+1)+(-5B+C)(0)#

#(75-10-1)=A(26)+(-5B+C)(0)#

#64=26A#

#64/26=(26A)/26#

#32/13=A#

Now solve for #C#

Substitute in for #x# and #A#

#x=0, A=32/13#

#(3(0)^2+2(0)-1)=(32/13)((0)^2+1)+(B(0)+C)((0)+5)#

#(-1)=(32/13)(1)+(C)(5)#

#-1=32/13+5C#

#-1-32/13=5C#

#(-13)/13-32/13=5C#

#(-45)/13=5C#

#((-45)/13)/5=(5C)/5#

#((-45)/13)*1/5=C#

#((-9)/13)*1/1=C#

#(-9)/13=C#

Substitute in #A# and #C# and let #x=1# as you solve for #B#

#(3(1)^2+2(1)-1)=(32/13)((1)^2+1)+(B(1)+((-9)/13))((1)+5)#

#(3+2-1)=(32/13)(1+1)+(B-9/13)(1+5)#

#4=(32/13)(2)+(B-9/13)(6)#

#4=(64/13)+(6B-54/13)#

#4-64/13+54/13=6B#

#52/13-64/13+54/13=6B#

#106/13-64/13=6B#

#42/13=6B#

#(42/13)/6=(6B)/6#

#(42/13)*1/6=B#

#7/13=B#

Substitute in #A#, #B#, and #C#

#(3x^2+2x-1)/((x+5)(x^2+1))=(32/13)/(x+5)+((7/13)x+(-9)/13)/(x^2+1)#

#(3x^2+2x-1)/((x+5)(x^2+1))=32/(13(x+5))+(7x+(-9))/(13(x^2+1))#

Partial-Fraction Decomposition

#(3x^2+2x-1)/((x+5)(x^2+1))=32/(13(x+5))+(7x-9)/(13(x^2+1))#