Question #8b077
1 Answer
Oct 22, 2014
y'=1/(2*sqrtx)*(ln(xe^x)+2+2x) Explanation :
y=x^(1/2)*ln(xe^x) Using Product Rule, which is
y=f(x)*g(x) differentiating with respect to
x ,
y'=f'(x)*g(x)+f(x)*g'(x) Now similarly following for the given problem,
y'=(x^(1/2))'ln(xe^x)+x^(1/2)(ln(xe^x))'
y'=1/2x^(-1/2)*ln(xe^x)+x^(1/2)*1/(xe^x)(xe^x)'
y'=1/2*1/x^(1/2)*ln(xe^x)+x^(1/2)*1/(xe^x)(e^x+xe^x)
y'=1/2*1/x^(1/2)*ln(xe^x)+1/(x^(1/2)e^x)(e^x+xe^x)
y'=1/2*1/x^(1/2)*ln(xe^x)+1/(x^(1/2))(1+x)
y'=1/2*1/x^(1/2)*(ln(xe^x)+2+2x)
y'=1/(2*sqrtx)*(ln(xe^x)+2+2x)