The special triangles, 30:60:90 and 45:45:9030:60:90and45:45:90, allow us to evaluate sine and cosine and tangent.
We leverage that information to evaluate tan(105).
tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))tan(a+b)=tan(a)+tan(b)1−tan(a)tan(b)
tan(60+45)=(tan(60)+tan(45))/(1-tan(60)tan(45))tan(60+45)=tan(60)+tan(45)1−tan(60)tan(45)
tan(105)=(tan(60)+tan(45))/(1-tan(60)tan(45))tan(105)=tan(60)+tan(45)1−tan(60)tan(45)
tan(105)=(sqrt(3)+1)/(1-sqrt(3)*1)tan(105)=√3+11−√3⋅1
tan(105)=(sqrt(3)+1)/(1-sqrt(3))tan(105)=√3+11−√3
Rationalize
tan(105)=(sqrt(3)+1)/(1-sqrt(3))*(1+sqrt(3))/(1+sqrt(3))tan(105)=√3+11−√3⋅1+√31+√3
tan(105)=(sqrt(3)+3+1+sqrt(3))/(1-3)tan(105)=√3+3+1+√31−3
tan(105)=(2sqrt(3)+4)/(-2)tan(105)=2√3+4−2
tan(105)=-3.732050808tan(105)=−3.732050808
To evaluate make sure that the calculator is in Degree mode.