Question #fdeca

1 Answer
Oct 26, 2014

cos(x)cos(x)

Explanation:

Recall our trig identities:

sin(2x) = 2sin(x)cos(x)sin(2x)=2sin(x)cos(x)

cos(2x) = cos^2(x) – sin^2(x)

sin^2(x)+cos^2(x)=1

Looking at our problem:

cos(2x) cos(x) + sin(2x) sin(x)

Let's substitute for sin(2x). This will give us:

cos(2x) cos(x) + (2sin(x)cos(x))* sin(x)

=cos(2x)cos(x)+2sin^2(x)cos(x)

Now, let's substitute sin^2(x) using the identity sin^2(x)+cos^2(x)=1

This gives us:

cos(2x)cos(x)+2sin^2(x)cos(x)

= cos(2x)cos(x)+2(1-cos^2(x))*cos(x)

Now, let's substitute cos(2x) using the identity cos(2x) = cos^2(x) – sin^2(x)

This gives us:

cos(2x)cos(x)+2(1-cos^2(x))*cos(x)

=(cos^2(x)-sin^2(x))*cos(x)+2(1-cos^2(x))*cos(x)

Now, let's substitute the sin^2(x) inside the parenthesis using the identity, sin^2(x)+cos^2(x)=1

This gives us:

(cos^2(x)-sin^2(x))*cos(x)+2(1-cos^2(x))*cos(x)

=(cos^2(x)-(1-cos^2(x)))*cos(x)+2(1-cos^2(x))*cos(x)

=(cos^2(x)-1+cos^2(x))*cos(x)+2(1-cos^2(x))*cos(x)

=(2cos^2(x)-1)*cos(x)+2(1-cos^2(x))*cos(x)

Now, multiplying through with our cos(x)'s:

(2cos^2(x)-1)*cos(x)+2(1-cos^2(x))*cos(x)

=2cos^3(x)-cos(x)+2(cos(x)-cos^3(x))

=2cos^3(x)-cos(x)+2cos(x)-2cos^3(x)

The 2cos^3(x) and the -2cos^3(x) cancel out,

and we are left with:

-cos(x)+2cos(x)

which equals:

cos(x)