Recall our trig identities:
sin(2x) = 2sin(x)cos(x)sin(2x)=2sin(x)cos(x)
cos(2x) = cos^2(x) – sin^2(x)
sin^2(x)+cos^2(x)=1
Looking at our problem:
cos(2x) cos(x) + sin(2x) sin(x)
Let's substitute for sin(2x). This will give us:
cos(2x) cos(x) + (2sin(x)cos(x))* sin(x)
=cos(2x)cos(x)+2sin^2(x)cos(x)
Now, let's substitute sin^2(x) using the identity sin^2(x)+cos^2(x)=1
This gives us:
cos(2x)cos(x)+2sin^2(x)cos(x)
= cos(2x)cos(x)+2(1-cos^2(x))*cos(x)
Now, let's substitute cos(2x) using the identity cos(2x) = cos^2(x) – sin^2(x)
This gives us:
cos(2x)cos(x)+2(1-cos^2(x))*cos(x)
=(cos^2(x)-sin^2(x))*cos(x)+2(1-cos^2(x))*cos(x)
Now, let's substitute the sin^2(x) inside the parenthesis using the identity, sin^2(x)+cos^2(x)=1
This gives us:
(cos^2(x)-sin^2(x))*cos(x)+2(1-cos^2(x))*cos(x)
=(cos^2(x)-(1-cos^2(x)))*cos(x)+2(1-cos^2(x))*cos(x)
=(cos^2(x)-1+cos^2(x))*cos(x)+2(1-cos^2(x))*cos(x)
=(2cos^2(x)-1)*cos(x)+2(1-cos^2(x))*cos(x)
Now, multiplying through with our cos(x)'s:
(2cos^2(x)-1)*cos(x)+2(1-cos^2(x))*cos(x)
=2cos^3(x)-cos(x)+2(cos(x)-cos^3(x))
=2cos^3(x)-cos(x)+2cos(x)-2cos^3(x)
The 2cos^3(x) and the -2cos^3(x) cancel out,
and we are left with:
-cos(x)+2cos(x)
which equals:
cos(x)