What is the derivative of xe^(-kx)xe−kx?
1 Answer
Dec 22, 2014
Answer :
y'=e^(-kx)(1-k*x) Solution :
Suppose :
y=f(x)*g(x) Using Product Rule which is,
y'=f(x)*g'(x)+f'(x)*g(x) Similarly following for the given problem,
y=x*e^(-kx) Differentiating with respect to
x ,
y'=x*(e^(-kx))'+e^(-kx)*(x)'
y'=x*(-k*e^(-kx))+e^(-kx)
y'=e^(-kx)(1-k*x)