What is the derivative of xe^(-kx)xekx?

1 Answer
Dec 22, 2014

Answer :

y'=e^(-kx)(1-k*x)

Solution :

Suppose :

y=f(x)*g(x)

Using Product Rule which is,

y'=f(x)*g'(x)+f'(x)*g(x)

Similarly following for the given problem,

y=x*e^(-kx)

Differentiating with respect to x,

y'=x*(e^(-kx))'+e^(-kx)*(x)'

y'=x*(-k*e^(-kx))+e^(-kx)

y'=e^(-kx)(1-k*x)