How do i differentiate xe^(xy)cos(2x)xexycos(2x) with respect to x??

1 Answer
Feb 5, 2015

This is actually a multiplication rule within a multiplication rule.

I'm going to evaluate it as:

(xe^xy)(cos(2x))(xexy)(cos(2x))

Remember the rule for multiplication:

first(derivative of the 2nd) + second(derivative of the first)

You also need to remember that you must take the derivative of the "inside" of the cos.

(xe^xy)(-2sin(2x))+(cos(2x))(x(e^(xy)y)+e^(xy))(xexy)(2sin(2x))+(cos(2x))(x(exyy)+exy)

-2xe^(xy)sin(2x)+xye^(xy)cos(2x)+e^(xy)cos(2x)2xexysin(2x)+xyexycos(2x)+exycos(2x)

We can factor out e^(xy)exy

e^(xy)(-2xsin(2x)+xycos(2x)+cos(2x))exy(2xsin(2x)+xycos(2x)+cos(2x))