How do you solve for x in #1/3lnx+ln2-ln3=3#?

2 Answers
Feb 19, 2015

Hello !

Write #\ln(x) = 3\times (3 + \ln(3) - ln(2))# and apply exp function :

#x = e^{3\times (3 + \ln(3) - ln(2))} = e^9\times e^{3 ln(3)}\times e^{-3 \ln(2)}#. You can simplify :

#x = e^9\times 27 \times \frac{1}{8} = \frac{27}{8}e^9#,

Remark. I used the rules
1) #e^{-x} = \frac{1}{e^x}#.
2) #n ln(a) = ln(a^n)#.
3) #e^{ln (a)} = a# if #a >0#.

Feb 19, 2015

The answer is: #x=27/8e^9#.

First of all we have to add a condition otherwise our equation loses meaning: #x>0#.

Than:

#1/3lnx+ln2-ln3=3rArrlnx=3(ln3-ln2+3)rArr#

#lnx=3(ln3-ln2+lne^3)rArrlnx=3ln(3e^3/2)rArr#

#lnx=ln(27/8e^9)rArrx=27/8e^9#

(That is positive, so it is acceptable).