How do you integrate #(sec2x) / (tan2x) dx# using substitution?

1 Answer
Mar 1, 2015

Hello,

Answer. #1/4 ln |(cos(2x) + 1)/(cos(2x) - 1)| + c#, where #c in RR#.

Explanation.

  • Because #tan(2x)=sin(2x)/cos(2x)# and #sec(2x) = 1/cos(2x)#, you have to calculate #int (dx)/sin(2x)#.

  • Take #u = cos(2x)#. You have #du = -2 sin(2x) dx#, so
    #int dx/sin(2x) = -1/2 int (du)/sin^2(2x) = -1/2 int (du)/(1-cos^2(2x))#,
    and so :
    #int dx/sin(2x) = 1/2 int (du)/(u^2-1)#.

  • Decompose #1/(u^2-1) = (1/2)/(u+1) - (1/2)/(u-1)# and finally
    #int sec(2x)/tan(2x) dx = 1/4 (ln(|u+1| - ln(|u-1|) + c#
    #int sec(2x)/tan(2x) dx = 1/4 ln |(u+1)/(u-1)| + c# and you get the result because #u=cos(2x)#.