#int x^3/(x^2+5)^2dx#
We can rewrite :
#x^3/(x^2+5)^2= (betax+gamma)/(x^2+5) + (thetax+nu)/(x^2+5)^2#
So : #((betax+gamma)(x^2+5))/((x^2+5)(x^2+5))+(thetax+nu)/(x^2+5)^2#
Then : #(betax^3+gammax^2+(5beta+theta)x+nu+5gamma)/(x^2+5)^2#
Identification :
#nu + 5gamma = 0#
#5beta + theta = 0#
#gamma = 0#
#beta = 1#
So :
#beta = 1#
# gamma = 0#
# theta = -5 #
# nu = 0#
#int x^3/(x^2+5)^2dx = intx/(x^2+5)dx-5int(x)/(x^2+5)^2dx#
#1/2int (2x)/(x^2+5)dx -5/2int(2x)/(x^2+5)^2dx#
#= (1/2ln(x^2+5)+5/(2x^2+10))+C#