How do you apply the sum and difference formula to solve trigonometric equations?

1 Answer

Main Sum and Differences Trigonometric Identities

cos (a - b) = cos a*cos b + sin a*sin bcos(ab)=cosacosb+sinasinb
cos (a + b) = cos a*cos b - sin a*sin bcos(a+b)=cosacosbsinasinb
sin (a - b) = sin a*cos b - sin b*cos asin(ab)=sinacosbsinbcosa
sin (a + b) = sin a*cos b + sin b*cos asin(a+b)=sinacosb+sinbcosa
tan (a - b) = (tan a - tan b)/(1 + tan a*tan b)tan(ab)=tanatanb1+tanatanb
tan (a + b) = (tan a + tan b)/(1 -tan a*tan b)tan(a+b)=tana+tanb1tanatanb

Application of Sum and Differences Trigonometric Identities

Example 1: Find sin 2asin2a.

sin 2asin2a
= sin (a + a)=sin(a+a)
= sin a*cos a + sin a*cos a=sinacosa+sinacosa
= 2*sin a*cos a=2sinacosa

Example 2: Find cos 2acos2a.

cos 2acos2a
= cos (a + a)=cos(a+a)
= cos a*cos a - sin a*sin a=cosacosasinasina
= cos^2 a - sin^2 a=cos2asin2a

Example 3: Find cos ((13pi)/12)cos(13π12).

cos ((13pi)/12)cos(13π12)
= cos (pi/3 + (3pi)/4)=cos(π3+3π4)
= cos (pi/3)*cos ((3pi)/4) - sin (pi/3)*sin ((3pi)/4)=cos(π3)cos(3π4)sin(π3)sin(3π4)
= -(sqrt2)/4 - (sqrt6)/4=2464
= -[sqrt2 + sqrt6]/4=2+64