How do you factor the difference of two cubes x^3 - 216x3216?

1 Answer
Apr 9, 2015

Remember this formula for factorizing difference of 2 cubes:
a^3−b^3=(a−b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

In x^3-216x3216,

a^3=x^3a3=x3
b^3=216b3=216

a= root3(x^3)a=3x3 = xx
b=root3(216)b=3216= 66

Substitute a=x a=x , b=6 b=6 into the formula of (a-b)(a^2+ab+b^2)(ab)(a2+ab+b2)

(x-6)(x6)(x^2(x2 + (66xxx) + 6^262)) = (x-6)(x6)(x^2(x2 + 6x6x+ 36)36)

(x-6)(x6)(x^2(x2 + 6x6x+ 36)36) is the factorized form of x^3-216x3216