How do you verify the identity of: cos^3x sin^2x=(sin^2x-sin^4x)cosxcos3xsin2x=(sin2xsin4x)cosx?

1 Answer
Apr 22, 2015

From basic definitions and the Pythagorean Theorem
cos^2(x)+sin^2(x)=1cos2(x)+sin2(x)=1
or
cos^2(x) = 1-sin^2(x)cos2(x)=1sin2(x)

First consider
(sin^2(x)-sin^4(x)(sin2(x)sin4(x)

=(sin^2(x))*(1-sin^2(x))=(sin2(x))(1sin2(x))

=underbrace(sin^2(x)cos^2(x))_(used below)

So
cos^3(x)sin^2(x)

=(cos(x)) * [underbrace((cos^2(x)sin^2(x)))_(as above)]

= (cos(x))*(sin^2(x)-sin^4(x))

= (sin^2(x)-sin^4(x))cos(x)