How do you factor #6x^3+1#?

1 Answer
May 14, 2015

There is a useful equality:
#a^n-b^n=#
#=(a-b)*(a^(n-1)b^0+a^(n-2)b^1+a^(n-3)b^2+...+a^2b^(n-3)+a^1b^(n-2)+a^0b^(n-1))#

It can easily be proven by induction.
In case of #n=3# it looks simple:
#a^3-b^3=(a-b)(a^2+ab+b^2)#

Using this equality for #n=3#, #a=6^(1/3)x# and #b=-1#, we get
#6x^3+1=(6^(1/3)x+1)(6^(2/3)x^2-6^(1/3)x+1)#