How do you prove (1 - sin2x) /(cos2x) = (cos2x) / (1 + sin2x)1−sin2xcos2x=cos2x1+sin2x?
1 Answer
We have to prove that
To do this we transform left side:
(1-sin2x)/(cos2x)=((sin^2x+cos^2x)-2sinxcosx)/(cos2x)1−sin2xcos2x=(sin2x+cos2x)−2sinxcosxcos2x
=(sin^2x-2sinxcosx+cos^2x)/(cos^2x-sin^2x)=sin2x−2sinxcosx+cos2xcos2x−sin2x
=(sinx-cosx)^2/((cosx-sinx)(cosx+sinx))=(sinx−cosx)2(cosx−sinx)(cosx+sinx)
=((sinx-cosx)^2)/(-(sinx-cosx)(sinx+cosx))=(sinx−cosx)2−(sinx−cosx)(sinx+cosx)
=(cosx-sinx)/(cosx+sinx)=cosx−sinxcosx+sinx
Now we expand the expresion by multiplying both numerator and denominator by
So we get:
((cosx-sinx)(cosx+sinx))/((cosx+sinx)^2)(cosx−sinx)(cosx+sinx)(cosx+sinx)2
=(cos^2x-sin^2x)/(cos^2x+2cosxsinx+sin^2x)=cos2x−sin2xcos2x+2cosxsinx+sin2x
=(cos2x)/(1+sin2x)=cos2x1+sin2x