How do you prove #(1 - sin2x) /(cos2x) = (cos2x) / (1 + sin2x)#?
1 Answer
We have to prove that
To do this we transform left side:
#(1-sin2x)/(cos2x)=((sin^2x+cos^2x)-2sinxcosx)/(cos2x)#
#=(sin^2x-2sinxcosx+cos^2x)/(cos^2x-sin^2x)#
#=(sinx-cosx)^2/((cosx-sinx)(cosx+sinx))#
#=((sinx-cosx)^2)/(-(sinx-cosx)(sinx+cosx))#
#=(cosx-sinx)/(cosx+sinx)#
Now we expand the expresion by multiplying both numerator and denominator by
So we get:
#((cosx-sinx)(cosx+sinx))/((cosx+sinx)^2)#
#=(cos^2x-sin^2x)/(cos^2x+2cosxsinx+sin^2x)#
#=(cos2x)/(1+sin2x)#