How do you prove (1 - sin2x) /(cos2x) = (cos2x) / (1 + sin2x)1sin2xcos2x=cos2x1+sin2x?

1 Answer
May 14, 2015

We have to prove that (1-sin2x)/(cos2x)=(cos2x)/(1+sin2x)1sin2xcos2x=cos2x1+sin2x

To do this we transform left side:

(1-sin2x)/(cos2x)=((sin^2x+cos^2x)-2sinxcosx)/(cos2x)1sin2xcos2x=(sin2x+cos2x)2sinxcosxcos2x

=(sin^2x-2sinxcosx+cos^2x)/(cos^2x-sin^2x)=sin2x2sinxcosx+cos2xcos2xsin2x

=(sinx-cosx)^2/((cosx-sinx)(cosx+sinx))=(sinxcosx)2(cosxsinx)(cosx+sinx)

=((sinx-cosx)^2)/(-(sinx-cosx)(sinx+cosx))=(sinxcosx)2(sinxcosx)(sinx+cosx)

=(cosx-sinx)/(cosx+sinx)=cosxsinxcosx+sinx

Now we expand the expresion by multiplying both numerator and denominator by (cosx+sinx)(cosx+sinx)

So we get:

((cosx-sinx)(cosx+sinx))/((cosx+sinx)^2)(cosxsinx)(cosx+sinx)(cosx+sinx)2

=(cos^2x-sin^2x)/(cos^2x+2cosxsinx+sin^2x)=cos2xsin2xcos2x+2cosxsinx+sin2x

=(cos2x)/(1+sin2x)=cos2x1+sin2x