How do you prove sin x = 1 - 2 cos^2xsinx=1−2cos2x? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bernardo Russo G. Ferreira May 16, 2015 For x=pi/6x=π6: sin(x) = 1/2, cos(x) = sqrt(3)/2sin(x)=12,cos(x)=√32 1 - 2 * (sqrt(3)/2)^2 = 1-2*3/4 = 1-3/2 = -1/2 != 1/21−2⋅(√32)2=1−2⋅34=1−32=−12≠12// Which proves it is False Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \thetacscθ×tanθ=secθ? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1(1−cos2x)(1+cot2x)=1? How do you show that 2 \sin x \cos x = \sin 2x2sinxcosx=sin2x? is true for (5pi)/65π6? How do you prove that sec xcot x = csc xsecxcotx=cscx? How do you prove that cos 2x(1 + tan 2x) = 1cos2x(1+tan2x)=1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x2sinxsecx(cos4x−sin4x)=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)−cotx=sin3x+sinxcos3x−cosx? How do you prove that (tanx+cosx)/(1+sinx)=secxtanx+cosx1+sinx=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)sinx−cosxsinx+cosx=2sin2x−11+2sinxcosx? See all questions in Proving Identities Impact of this question 2065 views around the world You can reuse this answer Creative Commons License