How do you find the exact value of #arc tan (1/2)+arc tan (1/3)#?

1 Answer
May 22, 2015

In this way:

#arctan(1/2)+arctan(1/3)=alpha#.

If we search the tangent of both members:

#tan(arctan(1/2)+arctan(1/3))=tanalpha#

And now, using the sum angle formula of the tangent:

#(tanarctan(1/2)+tanarctan(1/3))/(1-tanarctan(1/2)tanarctan(1/3))=tanalpharArr#

#(1/2+1/3)/(1-1/2*1/3)=tanalpharArrtanalpha=(5/6)/(5/6)=1rArr#

#alpha=45°+k180°#, or, in radians: #alpha=pi/4+kpi#.