How do you solve (1+2y)/(y-4 )= (4y^2+5y)/(2y^2-7y-4)1+2yy4=4y2+5y2y27y4?

2 Answers
May 29, 2015

(1+2y)/(y−4)=(4y^2+5y)/(2y^2−7y−4)1+2yy4=4y2+5y2y27y4

  • Factorize right hand side:

(4y^2+5y)/color(red)(2y^2-8y+y-4)4y2+5y2y28y+y4

(4y^2+5y)/[color(red)(2y(y-4)+1(y-4)]4y2+5y2y(y4)+1(y4)

=(4y^2+5y)/[(1+2y)(y-4)]=4y2+5y(1+2y)(y4)

  • Using the initial equation:

(1+2y)/color(red)cancel(y−4)=(4y^2+5y)/[(1+2y)color(red)cancel((y-4)]

  • Cross-Multiply

color(red)[(1+2y)^2]=4y^2+5y

By expansion: ->(a+b)^2=a^2+2ab+b^2

color(red)[1+4y+cancel(4y^2)]=cancel(4y^2)+5y

ANSWER
y=1

May 29, 2015

Have a look:
enter image source here