What is the derivative of sinx/(1+cosx)sinx1+cosx?

1 Answer
Jun 3, 2015

Use the division's derivative formula:

For a given function g: g=u/vg=uv for uu and v!=0v0 other functions, the derivative of g is found as;

g'=(u'v-uv')/v^2

If we apply it to our case:

f'(x)=((sinx)'(1+cosx)-sinx(1+cosx)')/(1+cosx)^2= (cosx(1+cosx)+sinxsinx)/(1+cosx)^2=(cosx+cos^2x+sin^2x)/(1+cosx)^2

Using now the trigonometric rule: cos^2x+sin^2x=1 we finally get:

f'(x)=(1+cosx)/(1+cosx)^2=1/(1+cosx)