Recall that cot(theta)=1/tan(theta)cot(θ)=1tan(θ)
and that tan(theta)=sin(theta)/cos(theta)tan(θ)=sin(θ)cos(θ)
So,
cot(theta)=1/tan(theta)=1/(sin(theta)/cos(theta))=cos(theta)/sin(theta)cot(θ)=1tan(θ)=1sin(θ)cos(θ)=cos(θ)sin(θ)
Now, let's just put in 90 degrees for thetaθ
cot(theta)=cos(theta)/sin(theta)cot(θ)=cos(θ)sin(θ)
cot(90)=cos(90)/sin(90)cot(90)=cos(90)sin(90)
Recall, from the unit circle (below) that sin(90)=1sin(90)=1 and cos(90)=0cos(90)=0:
So,
cot(90)=cos(90)/sin(90)cot(90)=cos(90)sin(90)
cot(90)=0/1 =0cot(90)=01=0