How do you find the integration of sinx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Azhar A. · Ernest Z. Jul 14, 2015 The answer will be ∫(sinx)dx=−cosx+c Explanation: We know that the ∫(sinx)dx=−cosx+c This is the fundamental rule of integration. Where c is the integral constant. Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 2353 views around the world You can reuse this answer Creative Commons License