What is the determinant of a matrix to a power?
2 Answers
Explanation:
A very important property of the determinant of a matrix, is that it is a so called multiplicative function. It maps a matrix of numbers to a number in such a way that for two matrices
det(AB)=det(A)det(B)det(AB)=det(A)det(B) .
This means that for two matrices,
det(A^2)=det(A A)det(A2)=det(AA)
=det(A)det(A)=det(A)^2=det(A)det(A)=det(A)2 ,
and for three matrices,
det(A^3)=det(A^2A)det(A3)=det(A2A)
=det(A^2)det(A)=det(A2)det(A)
=det(A)^2det(A)=det(A)2det(A)
=det(A)^3=det(A)3 and so on.
Therefore in general
| bb A^n | = | bb A|^n
Explanation:
Using the property:
|bbA bbB|=|bb A| \ |bb B|
Then we have:
| bb A^n | = |underbrace( bb A \ bb A \ bb A ... bb A)_("n terms") |
\ \ \ \ \ \ \ = | bb A| \ | bb A| \ | bb A| .... | bb A|
\ \ \ \ \ \ \ = | bb A|^n