How do you verify cotx-tanx=2cot2xcotxtanx=2cot2x?

2 Answers
Jul 24, 2015

Use the double angle formula for tan(2x)tan(2x) and the fact that cot(theta) = 1/tan(theta)cot(θ)=1tan(θ)

Explanation:

Double angle formula for tantan
color(white)("XXXX")XXXXtan(2x) = (2tan(x))/(1-tan^2(x))tan(2x)=2tan(x)1tan2(x)

2cot(2x) = 2* 1/tan(2x)2cot(2x)=21tan(2x)

color(white)("XXXX")XXXX=2* (1-tan^2(x))/(2 tan(x))=21tan2(x)2tan(x)

color(white)("XXXX")XXXX=1/tan(x) - tan^2(x)/tan(x)=1tan(x)tan2(x)tan(x)

color(white)("XXXX")XXXX=cot(x) - tan(x)=cot(x)tan(x)

Apr 6, 2017

Using the relationship between tan/cot and sin-cos, plus the double angle formulae for sin and cos. (as requested)

Explanation:

Remember:

color(red)("Basic definitions:")Basic definitions:
color(white)("XXX")color(red)(tan(theta)=sin(theta)/cos(theta)color(white)("XXX")cot(theta)=cos(theta)/sin(theta))XXXtan(θ)=sin(θ)cos(θ)XXXcot(θ)=cos(θ)sin(θ)

color(blue)("Double angle formulae for sin and cos")Double angle formulae for sin and cos
color(white)("XX"color(blue)(sin(2theta)=2 * sin(theta) * cos(theta)color(white)("XX")cos(2theta)=cos^2(theta)-sin^2(theta))XXsin(2θ)=2sin(θ)cos(θ)XXcos(2θ)=cos2(θ)sin2(θ)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Required to Prove:

color(green)(cot(x)-tan(x)=2cot(2x)cot(x)tan(x)=2cot(2x)

Proof:

R.S.R.S.
color(white)("XXX")=color(green)(2cot(2x))XXX=2cot(2x)

color(white)("XXX")=2 * cos(2x)/sin(2x)XXX=2cos(2x)sin(2x)

color(white)("XXX")=(cancel2 * (cos^2(x)-sin^2(x)))/(cancel2 * sin(x) * cos(x))

color(white)("XXX")=cos^2(x)/(sin(x) * cos(x)) - sin^2(x)/(sin(x) * cos(x))

color(white)("XXX")=cos(x)/sin(x) -sin(x)/cos(x)

color(white)("XXX")=color(green)(cot(x)-tan(x))

color(white)("XXX")=L.S.