How do you solve 2sin^2x + sinx =02sin2x+sinx=0 from [0,2pi][0,2π]?

1 Answer
Jul 25, 2015

Solve 2sin^2 x + sin x = 02sin2x+sinx=0 [0, 2pi][0,2π]

Explanation:

sin x(2sin x + 1) = 0sinx(2sinx+1)=0
Use trig table and unit circle -->

a. sin x = 0 => x = 0, and x = pix=π and x = 2pix=2π

b. 2sin x + 1 = 0 => sin x = -1/2sinx=12 => x = (7pi)/6x=7π6 and x = (11pi)/6x=11π6.

Finally, within interval [0, 2pi],[0,2π], there are 5 answers:
0, pi, 2pi, (7pi)/6 and (11pi)/60,π,2π,7π6and11π6