What is the derivative of y=(xex)lnX?

1 Answer
Jul 27, 2015

d(xexln(x))dx=1+(1x)ln(x)ex

Explanation:

xexln(x) is of the form F(x)G(x)

An equation of this form is deived like this:

d(F(x)G(x))dx=dF(x)dxG(x)+F(x)dG(x)dx

Furthermore, xex is of the form A(x)B(x)

An equation of this form is derived like this:

dA(x)B(x)dx=dA(x)dxB(x)A(x)dB(x)dxB(x)2

Knowing that:

A(x)=xdA(x)dx=1

B(x)=exdB(x)dx=ex

G(x)=ln(x)dG(x)dx=1x

Therefore:

d(xexln(x))dx=exxexe2xln(x)+xxex

=1xexln(x)+1ex=1+(1x)ln(x)ex