#x = n pi - pi/6(-1)^n " or " x = 2npi + pi/2 ", " n in ZZ #
Explanation:
#sin^2 x + cos^2 x = 1#
Divide by #sin^2 x# gives: #1 + cot^2 x = csc^2 x#
Therefore: #csc^2 x + csc x - 2 = 0# #(csc x + 2)(csc x - 1) = 0# #1/sin x = -2 " or " 1/sin x = 1# #sin x = -1/2 " or " sin x = 1# #x = n pi - pi/6(-1)^n " or " x = 2npi + pi/2 ", " n in ZZ #