Differentiate with respect to y : (2x-cos3y)^4sec(ln(1-xy))+√(1+(√y))?

1 Answer

sec(ln(1xy))(4(2xcos3y)3(2dxdy+3sin3y))+(2xcos3y)4sec(ln(1xy))tan(ln(1xy))(ydxdy+x)xy1+14y+yy

Explanation:

It's an atrocious chain rule phenomenon

Let (2xcos3y)4sec(ln(1xy))+1+y=pq+r
Where p=(2xcos3y)4,q=sec(ln(1xy)),r=1+y

dpdy=4(2xcos3y)3(2dxdy+3sin3y)

dqdy=sec(ln(1xy))tan(ln(1xy))(dxdyy+x)1xy

dqdy=sec(ln(1xy))tan(ln(1xy))(ydxdy+x)xy1

drdy=12y21+y=14y+yy

Thus ddy(2xcos3y)4sec(ln(1xy))+1+y
=ddy(pq+r)
=ddy(pq)+ddyr
=q(dpdy)+p(dqdy)+drdy
=sec(ln(1xy))(4(2xcos3y)3(2dxdy+3sin3y))+(2xcos3y)4sec(ln(1xy))tan(ln(1xy))(ydxdy+x)xy1+14y+yy