You can differentiate this function by using the quotient rule and the chain rule.
Before using these rules to differentiate the function, try to simplify it a little - this will save you a lot of work on the derivative. For example, you could write
#y = (color(red)(cancel(color(black)(e^x))) * (1 - e^(-2x)))/(color(red)(cancel(color(black)(e^x))) * (1 + e^(-2x))) = (1 - 1/e^(2x)) * (1/(1 + 1/e^(2x)))#
#y = (e^(2x) - 1)/color(red)(cancel(color(black)(e^2x))) * color(red)(cancel(color(black)(e^2x)))/(e^(2x) + 1) = (e^(2x) -1)/(e^(2x) + 1)#
So, you know that you can differentiate a function that takes the form
#y = f(x)/g(x)#, with #g(x)!=0#
by using the formula
#color(blue)(d/dx(y) = ([d/dxf(x)] * g(x) - f(x) * d/dx(g(x)))/[g(x)]^2)#
In your case, you have #f(x) = e^(2x)-1# and #g(x) = e^(2x)+1#, so you can write
#d/dx(y) = ([d/dx(e^(2x)-1)] * (e^(2x)+1) - (e^(2x)-1) * d/dx(e^(2x)+1))/(e^(2x) + 1)^2#
#y^' = (e^(2x) * 2 * (e^(2x) + 1) - (e^(2x)-1) * e^(2x) * 2)/((e^(2x) + 1)^2#
#y^' = (color(red)(cancel(color(black)(2e^4x))) + 2 * e^(2x) - color(red)(cancel(color(black)(e^4x))) + 2 * e^(2x))/(e^(2x) + 1)^2#
#y^' = color(green)((4e^(2x))/(e^(2x) + 1)^2)#