First you should be aware that:
sinA+sinB-=2sin((A+B)/2)cos((A-B)/2)sinA+sinB≡2sin(A+B2)cos(A−B2)
So using the above result,
sinx+sin3x=2sin((x+3x)/2)cos((x-3x)/2)sinx+sin3x=2sin(x+3x2)cos(x−3x2)
=2sin(2x)cos(-x)=color(blue)(2sin(2x)cos(x))=2sin(2x)cos(−x)=2sin(2x)cos(x)
Hence,
sinx+sin3x-cosx=0sinx+sin3x−cosx=0
Becomes,
2sin(2x)cos(x)-cos(x)=02sin(2x)cos(x)−cos(x)=0
Factor out cos(x)cos(x)
=>cos(x)[2sin(2x)-1]=0⇒cos(x)[2sin(2x)−1]=0
Case 1 :
cos(x)=0cos(x)=0
Thus , x=+-pi/2+2npi" "x=±π2+2nπ , ninZZ
Now we substitute all the values of n that will give us answers in in the interval [0,2pi]
n=0" " =>x=color(orange)(pi/2)
n=1" " =>x=-pi/2+2pi=color(orange)((3pi)/2)
Case 2:
2sin(2x)-1=0
=>sin(2x)=1/2
=>2x=pi/6(-1)^n+npi" " , ninZZ
=>x=pi/12(-1)^n+npi/2
Again, now we substitute all the values of n that give us the range we want,
n=0" " =>x=color(orange)(pi/12)
n=1" " =>x=-pi/12+pi/2=color(orange)((5pi)/12)