Write sin x +sin 3xsinx+sin3x as a product. Hence,find all angles xx in the interval[0,2pi][0,2π] that satisfy sin x +sin 3x - cos x =0sinx+sin3xcosx=0?

1 Answer
Sep 1, 2015

x in{pi/12," "(5pi)/12," "pi/2," "(3pi)/2}x{π12, 5π12, π2, 3π2}

Explanation:

First you should be aware that:
sinA+sinB-=2sin((A+B)/2)cos((A-B)/2)sinA+sinB2sin(A+B2)cos(AB2)

So using the above result,
sinx+sin3x=2sin((x+3x)/2)cos((x-3x)/2)sinx+sin3x=2sin(x+3x2)cos(x3x2)

=2sin(2x)cos(-x)=color(blue)(2sin(2x)cos(x))=2sin(2x)cos(x)=2sin(2x)cos(x)

Hence,

sinx+sin3x-cosx=0sinx+sin3xcosx=0

Becomes,

2sin(2x)cos(x)-cos(x)=02sin(2x)cos(x)cos(x)=0

Factor out cos(x)cos(x)

=>cos(x)[2sin(2x)-1]=0cos(x)[2sin(2x)1]=0

Case 1 :
cos(x)=0cos(x)=0

Thus , x=+-pi/2+2npi" "x=±π2+2nπ , ninZZ

Now we substitute all the values of n that will give us answers in in the interval [0,2pi]

n=0" " =>x=color(orange)(pi/2)
n=1" " =>x=-pi/2+2pi=color(orange)((3pi)/2)

Case 2:
2sin(2x)-1=0

=>sin(2x)=1/2

=>2x=pi/6(-1)^n+npi" " , ninZZ
=>x=pi/12(-1)^n+npi/2

Again, now we substitute all the values of n that give us the range we want,

n=0" " =>x=color(orange)(pi/12)

n=1" " =>x=-pi/12+pi/2=color(orange)((5pi)/12)