How do you integrate (x^5)*(e^(x^2/2))(x5)⋅(ex22)?
1 Answer
Explanation:
Let's assume
=int(x^5)*(e^(x^2/2))dx=∫(x5)⋅(ex22)dx can be written as,
=int(x^2)(x^2)x(e^(x^2/2))dx=∫(x2)(x2)x(ex22)dx Substituting with
tt we get
=int(2t)(2t)(e^t)dt=∫(2t)(2t)(et)dt
=4intt^2(e^t)dt=4∫t2(et)dt
Using Integration by Parts,
where
Similarly following for the problem,
=4(t^2)inte^tdt-4int((t^2)'inte^tdt)dt+c
=4t^2e^t-4int2te^tdt+c
=4t^2e^t-8intte^tdt+c
Applying again integration by parts in second term, we get
=4t^2e^t-8(te^t-inte^tdt)+c
=4t^2e^t-8(te^t-e^t)+c
=4t^2e^t-8te^t-8e^t+c
Substituting
=4(x^2/2)^2e^(x^2/2)-8(x^2/2)e^(x^2/2)-8e^(x^2/2)+c , wherec is a constant
=(4x^4-4x^2-8)e^(x^2/2)+c