If x=2+sqrt(3) and y=2-sqrt(3) then what is x^2+y^2+xy ?

3 Answers
Sep 4, 2015

15

Explanation:

x^2+y^2+xy= (x+y)^2-xy

= (2+sqrt(3)+2-sqrt3)^2-[(2+sqrt3)(2-sqrt3)]

=16-(4-3)=15

used: (a+b)^2=a^2+b^2+2ab
(a+b)(a-b)=a^2-b^2

Sep 4, 2015

15

Explanation:

If x=2+sqrt(3)
color(white)("XXXXXXXX")x^2=4+4sqrt(3)+3=color(red)( 7+4sqrt(3))

If y=2-sqrt(3)
color(white)("XXXXXXXX")y^2=4-4sqrt(3)+3= color(red)(7 - 4sqrt(3))

and
color(white)("XXXXXXXX")xy = 4-3 color(white)("XXXXX")=color(red)(1)

Sum=color(white)("XXXXXXXXXXXXXXXX")= color(blue)(15)

Sep 4, 2015

x^2+y^2+xy = 15

Explanation:

Use the difference of squares identity:

a^2 - b^2 = (a+b)(a-b) to calculate xy:

xy = (2+sqrt(3))(2-sqrt(3)) = 2^2-sqrt(3)^2 = 4-3 = 1

color(white)()
Also (x+y)^2 = x^2+2xy+y^2

So:

x^2+y^2+xy = x^2+2xy+y^2 - xy

=(x+y)^2 - xy = 4^2-1 = 16-1 = 15