How do you find the integral lnxx?

1 Answer
Sep 12, 2015

lnxx=(lnx)22+C

Explanation:

lnxx=?

This is a classic application of u -substitution.

Let u=lnx. Then du=1xdx.

Now we have

lnxxdx=udu

We can evaluate this easily by using the power rule:

udu=u22+C

Now, substituting back u, we find

u22+C=(lnx)22+C

And there is our solution.

lnxx=(lnx)22+C