How do you find the indefinite integral of int (x^2-3)/((x^2-9)(x+2)^2) dx?

1 Answer
Sep 23, 2015

int(x^2-3)/((x^2-9)*(x+2)^2)dx=-log(x+3)+log(x-3)/25+(19/25)*log(x+2)+1/(5(x+2))+C

Explanation:

let us assume (x^2 -3)/((x^2-9)*(x+2)^2)=a/(x+3)+b/(x-3)+c/(x+2)+d/(x+2)^2

then

(x^2 -3)=a*(x-3)*(x+2)^2+b*(x+3)*(x+2)^2+c*(x^2-9)*(x+2)+d*(x^2-9)

put x=3 in above equation
then
6=b*6*25+a*0+c*0+d*0
b=1/25
now
put x=-3 then
6=a*(-6)+b*0+c*0+d*0
a=-1

put x=-2
1=a*0+b*0+c*5*0+d*5

d=1/5

put x=0

(-3)=a*(-3)*4+b*3*4+c*(-9)*2+d*(-9)

now let us put the value of a, b and d in above equation to find the value of c

(-3)=(-12)*(-1)+(1/25)*12+(-18)*c+(1/5)*(-9)

c=19/25

therefore

int(x^2 -3)/((x^2-9)*(x+2)^2)dx = int((-1)/(x+3)+1/(25*(x-3))+19/(25*(x+2))+1/(5*(x+2)^2)) dx

int(x^2-3)/((x^2-9)*(x+2)^2)dx=-log(x+3)+log(x-3)/25+(19/25)*log(x+2)+1/(5(x+2))+C