How do you factor (a2+1)27(a2+1)+10?

2 Answers
Sep 28, 2015

a1=1,a2=1,a3=2,a4=2

Explanation:

Let (a2+1)=x
so the eqn is x27x+10=0
now,
x25x2x+10=0
x(x5)2(x5)=0
(x2)(x5)=0
x2=0x=2a2+1=2a2=1
a=±1
Again,
x5=0x=5a2+1=5a2=4
a=±2

Sep 28, 2015

(a2+1)27(a2+1)+10=(a+1)(a1)(a+2)(a2)

Explanation:

Let u=a2+1, then the expression is:

u27u+10 which can be factored:

(u2)(u5)

Replacing u, we get:

((a2+1)2)((a2+1)5).

We can simplify to get:

(a21)(a24).

Each of these is a difference of squares, so we can finish with:

(a+1)(a1)(a+2)(a2)