Question #64fb5

1 Answer

n=10n=10

Explanation:

""^nC_4 = 21 * ""^(n/2)C_3nC4=21n2C3

So we have

(n!)/(4! * (n-4)!) = 21 * ( (n/2)!)/(3! * [(n/2)-3]!n!4!(n4)!=21(n2)!3![(n2)3]!

we have

(cancel((n-4)!) * n * (n-1) * (n-2) * (n-3))/(4! * cancel([n-4)!]) = 21 * (( cancel((n/2)-4)!) * (n/2) * [(n/2)-1] * [(n/2)-2])/(3! * [cancel((n/2)-4)!])

( n * (n-1) * (n-2) * (n-3))/24 = 21 * ( n/2 * [(n/2)-1] * [(n/2) - 2])/6

n/2 goes in n twice and ((n/2)-1) goes in (n-2) twice

so we get

( cancel(n) * (n-1) * cancel((n-2)) * (n-3))/24 = 21 * ( cancel(n) * cancel(n-2) * [(n/2) - 2])/(2 * 2 * 6)

((n-1) * (n-3))/24 =21 * [(n/2)-2]/24

This is equivalent to

(n-1) * (n-3) = 21 * (n/2 - 2)

Next, we get

n^2 - 4*n +3 = 21*n/2 - 42

Bringing everything on one side we get

n^2 - 14.5*n +45 = 0

Multiplying the whole thing by 2 we get

2*n^2 - 29*n +90 = 0

2*n^2 - 20*n - 9*n +90 = 0

2*n*(n-10) - 9*(n-10) = 0

(n-10)*(2*n-9) = 0

n=10" " or " "n=4.5

n is a natural number, so n=10 is the valid answer.