How do you find the integral of int cos^3x sin^2x dx?

1 Answer
Sep 30, 2015

intcos^3xsin^2xdx=(1/3)sin^3x-(1/5)*sin^5x+c

Explanation:

intcos^3xsin^2xdx

=intcos^2x*sin^2x*(cosx)dx

=int (1-sin^2)sin^2x*d(sinx)

Hints:

(d(sinx))/dx=cosx

d(sinx)=cosxdx

Therefore,

=int(sin^2x-sin^4x)*d(sinx)
==(1/3)sin^3x-(1/5)*sin^5x+c