How do you find the integral of int cos^3x sin^2x dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer sakura ยท Stefan V. Sep 30, 2015 intcos^3xsin^2xdx=(1/3)sin^3x-(1/5)*sin^5x+c Explanation: intcos^3xsin^2xdx =intcos^2x*sin^2x*(cosx)dx =int (1-sin^2)sin^2x*d(sinx) Hints: (d(sinx))/dx=cosx d(sinx)=cosxdx Therefore, =int(sin^2x-sin^4x)*d(sinx) ==(1/3)sin^3x-(1/5)*sin^5x+c Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 51724 views around the world You can reuse this answer Creative Commons License