How do you find the general solutions for cos (x)^4-sin (x)^4=2*cos (x)*cos(2x)cos(x)4sin(x)4=2cos(x)cos(2x)?

1 Answer
Oct 19, 2015

There are 6 solutions over the interval [0,2pi][0,2π]. The "general solution can be found by adding 2pi2π to each of those 6 solutions.

Explanation:

I'll exclude the variable x for simplicity:

cos^4 - sin^4=2coscos(2)cos4sin4=2coscos(2)

Now simplify:

(cos^2-sin^2)(cos^2+sin^2)=2cos(cos^2-sin^2)(cos2sin2)(cos2+sin2)=2cos(cos2sin2)

(cos^2-sin^2)[(cos^2+sin^2)-2cos]=0(cos2sin2)[(cos2+sin2)2cos]=0

(cos-sin)(cos+sin)(1-2cos)=0(cossin)(cos+sin)(12cos)=0

Now, we have 3 factors, when set equal to 0, will give us two unique solutions each for a total of 6 solutions over the interval [0,2pi][0,2π]

cos-sin=0cossin=0; Solutions: pi/4, (5pi)/4π4,5π4
cos+sin=0cos+sin=0; Solutions: (3pi)/4, (7pi)/43π4,7π4
1-2cos=012cos=0; Solutions: (pi)/3, (5pi)/3π3,5π3

Again, the general solution is simply adding/subtracting multiples of 2pi2π to each of these 6 solutions.

hope that helped