So we will be proving that cos3x=4cos^3x-3cosxcos3x=4cos3x−3cosx
[1]color(white)(XX)cos3x[1]XXcos3x
[2]color(white)(XX)=cos(x+2x)[2]XX=cos(x+2x)
Angle sum identity: cos(alpha+beta)=cosalphacosbeta-sinalphasinbetacos(α+β)=cosαcosβ−sinαsinβ
[3]color(white)(XX)=cosxcos2x-sinxsin2x[3]XX=cosxcos2x−sinxsin2x
Double angle identity: cos2alpha=2cos^2alpha-1cos2α=2cos2α−1
[4]color(white)(XX)=cosx(2cos^2x-1)-sinxsin2x[4]XX=cosx(2cos2x−1)−sinxsin2x
[5]color(white)(XX)=2cos^3x-cosx-sinxsin2x[5]XX=2cos3x−cosx−sinxsin2x
Double angle identity: sin2alpha=2sinalphacosalphasin2α=2sinαcosα
[6]color(white)(XX)=2cos^3x-cosx-sinx(2sinxcosx)[6]XX=2cos3x−cosx−sinx(2sinxcosx)
[7]color(white)(XX)=2cos^3x-cosx-sin^2x(2cosx)[7]XX=2cos3x−cosx−sin2x(2cosx)
Pythagorean identity: sin^2alpha=1-cos^2alphasin2α=1−cos2α
[8]color(white)(XX)=2cos^3x-cosx-(1-cos^2x)(2cosx)[8]XX=2cos3x−cosx−(1−cos2x)(2cosx)
[9]color(white)(XX)=2cos^3x-cosx-(2cosx-2cos^3x)[9]XX=2cos3x−cosx−(2cosx−2cos3x)
[10]color(white)(XX)=2cos^3x-cosx-2cosx+2cos^3x[10]XX=2cos3x−cosx−2cosx+2cos3x
Combine like terms.
[11]color(white)(XX)=4cos^3x-3cosx[11]XX=4cos3x−3cosx
color(blue)( :.cos3x=4cos^3x-3cosx)