How do you solve the identity cos3x = 4cos^3x - 3cosxcos3x=4cos3x3cosx?

1 Answer
Oct 25, 2015

See explanation.

Explanation:

So we will be proving that cos3x=4cos^3x-3cosxcos3x=4cos3x3cosx

[1]color(white)(XX)cos3x[1]XXcos3x

[2]color(white)(XX)=cos(x+2x)[2]XX=cos(x+2x)

Angle sum identity: cos(alpha+beta)=cosalphacosbeta-sinalphasinbetacos(α+β)=cosαcosβsinαsinβ

[3]color(white)(XX)=cosxcos2x-sinxsin2x[3]XX=cosxcos2xsinxsin2x

Double angle identity: cos2alpha=2cos^2alpha-1cos2α=2cos2α1

[4]color(white)(XX)=cosx(2cos^2x-1)-sinxsin2x[4]XX=cosx(2cos2x1)sinxsin2x

[5]color(white)(XX)=2cos^3x-cosx-sinxsin2x[5]XX=2cos3xcosxsinxsin2x

Double angle identity: sin2alpha=2sinalphacosalphasin2α=2sinαcosα

[6]color(white)(XX)=2cos^3x-cosx-sinx(2sinxcosx)[6]XX=2cos3xcosxsinx(2sinxcosx)

[7]color(white)(XX)=2cos^3x-cosx-sin^2x(2cosx)[7]XX=2cos3xcosxsin2x(2cosx)

Pythagorean identity: sin^2alpha=1-cos^2alphasin2α=1cos2α

[8]color(white)(XX)=2cos^3x-cosx-(1-cos^2x)(2cosx)[8]XX=2cos3xcosx(1cos2x)(2cosx)

[9]color(white)(XX)=2cos^3x-cosx-(2cosx-2cos^3x)[9]XX=2cos3xcosx(2cosx2cos3x)

[10]color(white)(XX)=2cos^3x-cosx-2cosx+2cos^3x[10]XX=2cos3xcosx2cosx+2cos3x

Combine like terms.

[11]color(white)(XX)=4cos^3x-3cosx[11]XX=4cos3x3cosx

color(blue)( :.cos3x=4cos^3x-3cosx)