For #f(x)=sin^2x# what is the equation of the tangent line at #x=(3pi)/2#?

1 Answer
Oct 28, 2015

#y=1#, this is the equation of the tangent line

Explanation:

#f(x)=sin^2x=(sin x)^2#
graph{(y-(sinx)^2)=0 [-10, 10, -5, 5]}

Substitute in the x value to find the y value.

#f((3pi)/2)=sin^2((3pi)/2)=(sin ((3pi)/2))^2=(-1)^2=1#

The coordinates of the point are #((3pi)/2,1)#

graph{((x-4.71225)^2+(y-1)^2-0.007)=0 [-10, 10, -5, 5]}

Find the equation for the derivative(slope)

#f'(x)=2(sinx)(cos x)#

graph{2sinxcosx [-10, 10, -5, 5]}

Substitute in the value of x to get a numeric value for the derivative(slope)

#f'(x)=2sin((3pi)/2)cos ((3pi)/2)=2(-1)(0)=-2(0)=0=m#

A slope of zero indicates a horizontal line.

Use the point slope formula to find the equation of the tangent line.

#(y-y_1)=m(x-x_1)# where #(x_1,y_1)# indicates the coordinates of the point.

#m=slope=0#

Now substitute in the values

#(y-1)=0(x-(3pi)/2)#

#(y-1)=0#

#y-1=0#

#y=1#, this is the equation of the tangent line

graph{(y-(sinx)^2)(y-1)((x-4.71225)^2+(y-1)^2-0.007)=0 [-10, 10, -5, 5]}